

Physical Security Interoperability Alliance
Service Model
Version 1.0
Revision 1.2
19 February 2009

Revision
History

Description Date By

Version 1.0
Rev 0.1

Initial Draft January 15, 2009 Frank Yeh

Version 1.0
Rev 0.9

Incorporated all
Changes from
Core Group
Review

January 23, 2009 Frank Yeh

Version 1.0
Revision 1.0

Incorporated
final changes
from public
comment period

February 13,
2009

Frank Yeh

Version 1.0
Revision 1.1

Incorporated
negotiated
changes from
final review and
ratification
sessions

February 17,
2009

Frank Yeh

Version 1.0
Revision 1.2

Final Change for
Versioning,
Added in .xsd
document

February 19,
2009

Frank Yeh

Disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE. Without limitation, PSIA disclaims all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and PSIA disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.
No license, express or implied, by estoppel or otherwise, to any PSIA or PSIA member intellectual
property rights is granted herein.

Except that a license is hereby granted by PSIA to copy and reproduce this specification for internal
use only.

Contact the Physical Security Interoperability Alliance at info@psialliance.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

PSIA Service Model Version 1.0 1

Table of Contents
1. Introduction ... 4
2. Design Considerations.. 4
2.1. REST Overview.. 4
2.2. Conformance .. 5

2.2.1. Minimum API Set .. 5

2.2.2. XML Requirements ... 5

2.2.3. Protocol Requirements ... 6

2.3. HTTP Methods and REST.. 6
2.4. HTTP Status Codes and REST.. 6
2.5. Unique Identifiers.. 9
2.6. ID Encoding .. 9

3. Architecture and Namespace ... 10
 3.1 Multiple Channels and Versions ... 12
4. System Flow ... 13
4.1. Service Discovery... 13
4.2. Persistent Connections... 14
4.3. Authentication... 14
4.4. Access Restrictions .. 15
4.5. Setting Configurations .. 15
4.6. Getting Configurations.. 16
4.7. Getting Capabilities .. 16
4.8. Uploading Data... 17
4.9. Receiving Data ... 18
4.10. Operations .. 18
4.11. Diagnostics ... 18
4.12. Response Status .. 19

4.12.1.Status Code .. 19

4.12.2.Status String ... 19

4.12.1.ID .. 19

4.13. Processing Rules.. 19
5. XML Modeling ... 20
5.1. File Format ... 20
5.2. Data Structures... 20
5.3. Lists .. 20
5.4. Capabilities ... 20

6. Custom Services & Resources ... 23
7. Interface Design.. 23
7.1. Protocol .. 23
7.2. Hostname ... 23
7.3. Port ... 23
7.4. URI.. 23
7.5. Query String ... 24
7.6. Resource Description ... 24

8. PSIA Standard Resource Descriptions... 25
8.1. index ... 25
8.2. indexr.. 25
8.3. description .. 25
8.4. capabilities.. 25

9. Acknowledgements... 26
10. Appendices ... 26

PSIA Service Model Version 1.0 2

10.1. Schemas... 26
10.1.1. ResourceDescription ... 26

10.1.2. ResourceList.. 27

10.1.3.QueryStringParameterList .. 27

10.1.4.responseStatus... 27

10.1.5.service.xsd.. 28

PSIA Service Model Version 1.0 3

1. Introduction
The Service Model is intended to assist the PSIA working groups in creating new protocols or
converting contributed protocols to a standard service model that will be common to all endorsed
specifications. Adherence to this service model will ensure interoperability between compliant
protocols.

This model is similar in nature to Web services but is geared towards lightweight computing
requirements on devices. As such, these protocols will not use Simple Object Access Protocol (SOAP)
as defined by the W3C-defined Web services but instead will use a simplified XML schema and/or xml
schema documents (.xsd’s).

 Unless otherwise noted, all PSIA specifications should treat all configuration and management
aspects as resources utilizing the REpresentational State Transfer (REST) architecture.

The PSIA Service Model is based on a REST architecture. While REST specifies that all interfaces are
defined as resources, in the PSIA Model these resources are grouped by service. This architecture
provides a convenient way to group related resources within a hierarchical namespace and lends itself
to service discovery and future expansion.

The PSIA reserves the right to add services at any time provided said services adhere to the PSIA
model as defined herein. Every effort should be taken to maintain full backward compatibility when
adding new services. The PSIA Service Model is designed to support expansion with backwards
compatibility.

2. Design Considerations
Network-attached devices are often equipped with a web server to maintain various web pages.
These pages allow the devices to be configured through an internet browser. It is natural to reuse this
web server and the HTTP protocol in order for external applications to configure and control the
device. Thus, all resources will use a standard HTTP request which will be processed by the device’s
web server.

When possible, IP devices should implement HTTPS to support privacy of data. It is assumed that the
network infrastructure is configured properly with firewall, 802.1x, etc. and other features to provide
basic network level security. Additionally, because IP devices are typically endpoint devices, HTTPS
is assumed to provide sufficient safeguard in combination with the other features mentioned above.

Some devices are not capable of implementing HTTPS and in certain deployments it may not be
necessary (i.e. closed networks). Additionally, SSL/TLS implies certificate management on an
endpoint which could pose other problems. Embedded devices may not have a “trusted” certificate
without a client explicitly trusting the certificate or uploading a trusted certificate. Furthermore,
certificates may need to be regenerated upon configuration changes (IP address, etc.).

As such, the protocols use the HTTP Get and Post methods as described in “Hypertext Transfer
Protocol -- HTTP/1.0” (RFC1945) and “Hypertext Transfer Protocol -- HTTP/1.1” (RFC2616).

2.1. REST Overview
REST is an approach to creating services that expose all information as resources in a uniform way.
This approach is quite different from the traditional Remote Procedure Call (RPC) mechanism which
identifies the functions that an application can call. Put simply, a REST Web application is noun-driven

PSIA Service Model Version 1.0 4

while an RPC Web application is verb-driven. For example, if a Web application were to define an
RPC API for user management, it might be written as follows:

GET http://webserver/getUserList
GET http://webserver/getUser?userid=100
POST http://webserver/addUser
POST http://webserver/updateUser
GET http://webserver/deleteUser?userid=100

On the other hand, a REST API for the same operations would appear as follows:

GET http://webserver/users
GET http://webserver/users/user100
POST http://webserver/users
PUT http://webserver/users/user100
DELETE http://webserver/users/user100

Part of the simplicity of REST is its uniform interface for operations. Since everything is represented as
a resource, create, retrieve, update, and delete (CRUD) operations use the same URI.

2.2. Conformance
Every PSIA protocol will define one or more PSIA compliant services. To ensure interoperability, the
following conformance requirements are also implied in each PSIA protocol.

2.2.1. Minimum API Set
In addition to the service specific mandatory requirements, a system/device must support all of the
mandatory PSIA services.

Each specification may define one or more PSIA compliant services. Each service and each contained
resource must be assigned a scope of either mandatory or optional. Within each implemented service
type, all mandatory resources must be implemented.

2.2.2. XML Requirements
A system/device must support the syntax as defined by the W3C XML 1.0 specification.

A system/device must support the UTF-8 character set as described by

http://www.w3.org/International/O-charset

Additionally, XML content must correspond to the following Schemas as defined in Appendix 10:

• “ResourceList XML Schema”
• “ResourceDescription XML Schema”
• “QueryStringParameterList XML Schema”
• “ResponseStatus XML Schema”

Vendors may optionally extend this standard to include proprietary XML content as long as it does not
conflict with the minimum set of APIs. In this case, it is recommended to use a vendor-specific XML
namespace to avoid conflicting names that may arise with future revisions.

PSIA Service Model Version 1.0 5

For example, if vendor XYZ123 Inc intends to extend the XML standard to include a <configOption>
parameter, it is recommended to use <configOption xmlns=”urn:XYZ123-com:configuration:options”>
to avoid future namespace conflicts.

2.2.3. Protocol Requirements
A system/device must support transport of XML via either the HTTP/1.0 or HTTP/1.1 protocol as
specified in RFC1945 and RFC2616, respectively. It is highly recommended that HTTP/1.1 is used in
order to support key features (persistent connections, HTTPS, etc.). When HTTP 1.0 is implemented,
the client applications must not issue multiple messages to the target systems/devices.

2.3. HTTP Methods and REST

The CRUD operations are defined by the HTTP method as shown in the table below.

HTTP Method Operation
POST Create the resource
GET Retrieve the resource
PUT Update the resource
DELETE Delete the resource

Rules of thumb

GET calls should never change the system state. They are meant to only return data to the requestor
and not to have any side effects
POST calls should only be used to ADD something that did not already exist.
PUT calls are expected to update an existing resource but if the resource specified does not already
exist, it can be created as well. This will be the assumed default behavior of PUT calls. If any resource
wishes to deviate from this behavior, it should be considered an exception and this should be noted in
the implementation notes of the resource.

2.4. HTTP Status Codes and REST

The following table shows how the HTTP status codes map to REST operations along with the general
use case for response headers and bodies. For more information, please see the table under each
REST API.

HTTP
Status
Codes

REST
Meaning

 POST GET PUT DEL

200 “OK” - The request has succeeded.
Header Notes: None
Body Notes: The requested resource will
be returned in the body.

 X X

PSIA Service Model Version 1.0 6

HTTP
Status
Codes

REST
Meaning

 POST GET PUT DEL

201 “Created” - The request has created a
new resource.
Header Notes: The Location header
contains the URI of the newly created
resource.
Body Notes: The response returns an
entity describing the newly created
resource.

X

204 “No Content” - The request succeeded,
but there is no data to return.
Header Notes: None
Body Notes: No body is allowed.

 X X

301 “Moved Permanently” - The requested
resource has moved permanently.
Header Notes: The Location header
contains the URI of the new location.
Body Notes: The body may contain the
new resource location.

 X

302 “Found” - The requested resource should
be accessed through this location, but the
resource actually lives at another
location. This is typically used to set up
an alias.
Header Notes: The Location header
contains the URI of the resource.
Body Notes: The body may contain the
new resource location.

 X

400 “Bad Request” - The request was badly
formed. This is commonly used for
creating or updating a resource, but the
data was incomplete or incorrect.
Header Notes: The Reason-Phrase sent
with the HTTP status header may contain
information on the error.
Body Notes: The response may contain
more information of the underlying error
that occurred in addition to the Reason-
Phrase.

X X

PSIA Service Model Version 1.0 7

HTTP
Status
Codes

REST
Meaning

 POST GET PUT DEL

401 “Unauthorized” - The request requires
user authentication to access this
resource. If the request contains invalid
authentication data, this code is sent.
Header Notes: At least one authentication
mechanism must be specified in the
WWW-Authenticate header. The Reason-
Phrase sent with the HTTP status header
may contain information on the error.
Body Notes: The response may contain
more information of the underlying error
that occurred in addition to the Reason-
Phrase.

X X X X

403 “Forbidden” - The request is not allowed
because the server is refusing to fill the
request. A common reason for this is that
the device does not support the
requested functionality.
Header Notes: The Reason-Phrase sent
with the HTTP status header may contain
information on the error.
Body Notes: The response may contain
more information of the underlying error
that occurred in addition to the Reason-
Phrase.

X X X X

404 “Not Found” - The requested resource
does not exist.
Header Notes: None
Body Notes: None

X X X X

405 “Method Not Allowed” – The request used
an HTTP method that is not supported for
the resource because the {API Protocol}
specification does not allow this method.
If the device does not support the
functionality but it is a valid {API Protocol}
operation, then a 403 is returned.
Header Notes: The Allow header lists the
supported HTTP methods for this
resource.
Body Notes: None

X X X X

500 “Internal Server Error” - An internal server
error has occurred.
Header Notes: None
Body Notes: None

X X X X

PSIA Service Model Version 1.0 8

HTTP
Status
Codes

REST
Meaning

 POST GET PUT DEL

503 “Service Unavailable” – The HTTP server
is up, but the REST service is not
available. Typically this is caused by too
many client requests.
Header Notes: The Retry-After header
suggests to the client when to try
resubmitting the request.
Body Notes: None

X X X X

2.5. Unique Identifiers
IDs are defined as URL-Valid Strings, as required by REST. The device will create an ID for all
resources that add a resource.

IDs within each type should be unique at least on the channel level, but there is no requirement for
uniqueness across devices. If globally unique IDs are desired, a globally unique ID should be derived
using the method described in RFC4122.

2.6. ID Encoding
Because IDs will occur as part of a URI, there are two ways to encode an ID: either following RFC
3986 or, for pure binary IDs, as a hex string

RFC 3986 first converts the URI to UTF and then prints the following unreserved characters in the URI
without any encoding:

• A-Z
• a-z
• 0-9
• -
• .
• _
• ~

All non-printable or reserved characters will be encoded as a two digit hex value prefixed by a %. For
example, a space (ASCII value of 32) will be encoded as %20.

Because a pure binary ID can contain values that might interfere with the operation of browsers and
web servers, PSIA protocols support hex encoding of the ID. The ID must begin with 0x (0X is also
acceptable) followed by pairs of hex values. Each hex pair represents a single byte in the ID. For
example: 0x3F431245DE67FAC46F9D034CA23AEFD4. The hexadecimal characters A-F can also be
represented by a-f. So 0x3f431245de67fac46f9d034ca23aefd4 is equivalent to the previous ID.
If readable IDs are desired, it is recommended that IDs are created with unreserved, printable ASCII
characters.

PSIA Service Model Version 1.0 9

3. Architecture and Namespace

In a typical REST-based namespace, every node or object in the tree-structured hierarchy is
considered a resource.

The PSIA model adds a resource sub-class called “Service”. Services are simply nodes which can
contain other nodes. Nodes that do not contain other nodes (other than the standard node resources
of the PSIA model) will continue to be called resources, while the term node will be used to refer to
both services and resources.

Viewed as a tree, services are analogous to branches and resources are analogous to leaves.

Each node must contain the following standard PSIA resources:

description which will respond to an HTTP GET with a ResourceDescription datablock
index which will respond to an HTP GET with a ResourceList datablock

Each node may contain the following standard PSIA resources:

indexr which will respond to an HTTP GET with a ResourceList datablock
capabilities which will respond to an HTTP GET with a resource-specific XML Document

The index resource will return a list of all the immediate “children” of a node. For services, this list
could contain other services as well as resources. For resources, this list should only indicate which
standard PSIA resources (IE description, index, and optionally indexr and capabilities) are contained.
The optional indexr resource will return a recursive listing that descends through the namespace
hierarchy.

PSIA Service Model Version 1.0 10

Resource
Name

Description Mandatory/Optional

description will respond to an HTTP GET with a
<ResourceDescription> datablock

Mandatory

capabilities will respond to an HTTP GET with a
resource-specific XML Document

Optional

index will respond to an HTTP GET with a
<ResourceList> datablock

Mandatory

indexr will respond to an HTTP GET with
<ResourceList> datablock

Optional

For all PSIA protocols, the root namespace of “PSIA” will be implicit, meaning it does not have to be
included in the URL. Therefore, the root of any PSIA service’s namespace will be a tag particular to
that service.

Each service will be mandatory or optional, indicating to implementers which services they must
implement at a minimum. Within each service, resources will also be mandatory or optional. This
scope will be hierarchical so that any resource of an optional service is, by definition, optional but if an
optional service type is deployed, then every mandatory resource within that service then becomes
mandatory,

Service URL Description Mandatory/Optional
/System Resources related to general system

configuration and operation
Mandatory

PSIA Service Model Version 1.0 11

/System/Storage Resources related to local storage Optional

/System/Network Resource related to Network settings Mandatory

/Security Resources related to security of the
device

Mandatory

/Security/AAA Resources related to AAA functions Mandatory
/Streaming Resources related to streaming media

content
Optional

/PTZ Resources related to Pan/Tilt/Zoom Optional
/Archive Resources related to storage of content Optional
/Diagnostics Resources related to Diagnostics Optional
/Custom Resources that are specific to a protocol

or
vendor specific

Optional

3.1 Multiple Channels and Versions

To provide for multi-channel support, a service must insert the implied “Channels” service as a child-
node which should then contain an ID resource for each channel. Each ID resource will then respond
to each of the resources applicable to the service.

For Single-Channel Devices, the Channels service must still be included to maintain consistency
between single and multi-channel devices and to provide for the case where a multichannel device has
only created a single channel.

Note that Channel IDs are arbitrarily assigned by the device.

(EG. For a single channel device:
 /Streaming/Channels/0/keyFrame
 For a multi-channel device
 /Streaming/Channels/0/keyFrame
 /Streaming/Channels/1/keyFrame)

Devices may either pre-define this multichannel structure or support dynamic additions and deletions
of channels (using HTTP POST and DELETE) as applicable.

In order to differentiate services that essentially provide for multiple instances of something within the
hierarchy, it is recommended that services at the root level be referred to as “Root Services” while the
term service continue to be used to describe any node that contains other nodes (EG Streaming is a
Root Service, Channels is not).

Each node, be it a resource or service, will be able to return a description of itself within the service
model. This description will include a version attribute to support versioning within the PSIA Service
model. While this practice will allow resources with different versions to exist within the same services,
it is mandatory that all resources within a service container are fully backward compatible.

If a new service version is introduced that does not maintain backwards compatibility with previous
versions, then a new service must be created for the new, incompatible version (EG /Streaming and
/StreamingV2). IE it is acceptable to add resources to a Service but not to replace them with new
versions that are not backward compatible. If new resource versions must be added, the Root Service
name should be changed to indicate a new Service version.

PSIA Service Model Version 1.0 12

4. System Flow

Before any protocol can be used to manage a device, it must first be discovered. It is required that the
Zeroconf (Zero Configuration Networking) technology be supported to discover/locate the device.
Once this step is accomplished, transactions can commence.

While devices must support ZeroConf, this does not preclude devices from using DHCP or manual IP
Addressing. Devices should check for manually assigned IP addresses and DHCP assigned IP
Addresses before attempting to assign an address using IPv4 Link-Local Addressing (which is the
method for Ip Address discovery for ZeroConf).

ZeroConf is normally expected to operate in a local area network. Where discovery must be supported
in a routed or Wide Area Network, part 2 of ZeroConf (Multicat DNS) becomes superfluous and part 3
(DNS-SD) must be supported by configuration of actual DNS servers.

HTTP requests are made through the device’s web server. The HTTP response may contain XML
content (for GET actions), XML response information (for PUT or POST actions), or various text/binary
content (for retrieval of configuration data, etc.). Edge devices should be able to handle
overlapping/simultaneous HTTP requests, as well as persistent connections to handle multiple HTTP
transactions.

The XML content should be described by .xsd documents. Relevant XML data structures must be
documented in an Appendix section of each PSIA Specification.

4.1. Service Discovery

Zeroconf (Zero Configuration Networking) technology specifies DNS-SD (DNS Service Discovery as
described in http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt) to discover/locate a device.

All PSIA protocols will require DNS-SD for device discovery. To support this discovery model, the
PSIA is registering a DNS SRV (RFC 2782) service type to be used to discover all PSIA protocols via
DNS –SD (DNS Service Discovery).

DNS-SD discoveries for the PSIA’s public DNS service type should be used to discover the device
according to DNS Service Discovery (http://www.dns-sd.org/ServiceTypes.html). Once a device is
established as a PSIA-compliant device, its services and resources can be discovered using standard
HTTP GETs using the standard, mandatory resources.

The following information should be advertised:
A path of “/index/” – can be obtained from the “path” key in the TXT record
The {host} – can be obtained from the service’s SRV record
The {port} – can be obtained from the service’s SRV record
The version of the DNS SVR record in “txtvers”
The PSIA protocol version in “protovers”

Once a PSIA-compliant device has been discovered, an HTTP GET of its mandatory index resource
will return a list of the services that it supports. At this point, the standard methods can be used to
“walk” the namespace tree and discover the supported services and resources.

It should be noted that the index resource returns only the first level resources of a node, but the
indexr resource will return a recursive tree structured list with the current resource as root.

PSIA Service Model Version 1.0 13

4.2. Persistent Connections
Devices that implement HTTP/1.1 should support persistent connections in order to support video
management systems or client applications that issue multiple HTTP(S) transactions. The PSIA
assumes that HTTP/1.1 is implemented and utilized according to RFC2616. For persistent connections
with devices that support HTTP/1.0 RFC2068 section 19.7.1 should be referenced.

A video management system or client application should, when using a persistent connection for
multiple transactions, implement the “Connection: Keep-Alive” HTTP header. The management
system should also use the “Connection: close” HTTP header field for the last transaction made within
this persistent connection. This process assumes that the application is aware of the last request in a
sequence of multiple requests.

4.3. Authentication
When an application sends any request to the device, it must be authenticated by means of Basic
Access or Digest authentication according to RFC 2617. This means the user access credentials are
sent along with each request. If a user is authenticated, the request will follow the normal execution
flow. Basic Access and/or Digest authentication are mandatory for all device implementations. It is up
to the client to determine which method to use for different deployment scenarios.

A default user account, “admin”, must be provided by the IP device. This account should have a
default privilege level of “administrator”, and must not be deleted. The default password of the “admin”
account should be null in factory default configuration.

Example client HTTP request header and body with no authentication credentials:

GET /index
…

Example unauthorized HTTP response header and body:

HTTP/1.1 401 Unauthorized
…
WWW-Authenticate: Digest realm="testrealm@host.com",
 qop="auth,auth-int",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"
Content-Type: application/xml; charset=”UTF-8”
Content-Length: xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<ResourceList version=“1.0” xmlns=“urn:psialliance-org:resourcelist”>
 …
</ResourceList>

Example client HTTP request header and body with authentication credentials (username “Mufasa”
and password “Circle of Life”):

PSIA Service Model Version 1.0 14

GET /index
…
Authorization: Digest username="Mufasa",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Example authorized HTTP response header and body:

HTTP/1.1 200 OK
…
Content-Type: application/xml; charset=”UTF-8”
Content-Length: xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<ResourceList version="1.0" xmlns="urn:psialliance-org:resourcelist">
 <Resource>
 …
 </Resource>
</ResourceList>

4.4. Access Restrictions
All supported resources on a device must be fully accessible to users with the “Administrator” privilege
level. This means that in order to use the full suite of resources a device offers, authentication must
be granted with a user account having a privilege level corresponding to “Administrator”.

It is required that at least one account with Administrator privileges be active at all times.

There are no restrictions as to which resources are accessible to users with other privilege levels. A
vendor may choose to limit, for example, the allowable resources for user accounts with lower
privileges. However, since user-specific authorization is not a function of the protocol, it is often
assumed that full administrative rights will be available via the protocol. User-specific authorization
functions are expected to be handled by the calling application.

While “Administrator” privilege levels must be provided for, there is no requirement that any specific
users be assigned an administrative privilege level. In cases where external requirements preclude a
single user having all privileges, more granular authorization can be performed using user and role
assignments which do not have full administrative privileges.

4.5. Setting Configurations
Resources to set device configurations will use the HTTP PUT method if there is an XML block
parameter for the request, and the HTTP GET method if there is no XML block parameter. The
inbound XML format is defined according to a resource-specific XML schema For PUT operations, the
request status will be indicated by the XML response information returned from the device, and can be
used to indicate the status of the set operation. This XML format is defined according to “XML
Response Schema” (see section 4.12 for details). After successfully updating the repository, the
device returns an XML response with status code “OK”. A separate status code is used for
unsuccessful operations. In either case, the device will not return a response until it is ready to
continue normal operation – this includes accepting streaming requests, receiving behavioral control
commands, etc.

Example HTTP request header and body:

PSIA Service Model Version 1.0 15

POST /System/deviceInfo HTTP/1.1
…
Content-Type: application/xml; charset=”UTF-8”
Content-Length:xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<DeviceInfo version="1.0" xmlns="urn:psialliance-org:system:deviceinfo">
…
</DeviceInfo>

Example HTTP response header and body:

HTTP/1.1 200 OK
…
Content-Type: application/xml; charset=”UTF-8”
Content-Length: xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<ResponseStatus version=“1.0” xmlns=“urn:psialliance-org:response”>
…
</ResponseStatus>

4.6. Getting Configurations
Resources to get device configurations or status information will use the HTTP GET method. If
successful, the result will be returned in XML format according to the resource description. If the
request is unsuccessful for any reason (i.e. not authenticated), the result will be returned in XML
format according to “ResponseStatus XML Schema”. The Content-Type and Content-Length will be
set in the headers of the HTTP response containing the XML data. The Content-Type is:
application/xml; charset=“UTF-8”.

Example HTTP request header and body:

GET /System/deviceInfo HTTP/1.1
…

Example HTTP response header and body:

HTTP/1.1 200 OK
…
Content-Type: application/xml; charset=”UTF-8”
Content-Length: xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<DeviceInfo version="1.0" xmlns="urn:psialliance-org:system:deviceinfo">
 …
</DeviceInfo>

4.7. Getting Capabilities
Capabilities can also be retrieved by any resources node that specifies an XML payload for inbound
data with an HTTP GET of its “capabilities” resource. In other words, a client application can query a
device for its capabilities in order to understand what XML tags are supported, the acceptable data
ranges, etc. See Section 5.4 for more detail on the returned capabilities.

 Example HTTP request header and body:

GET /PTZ/channels/ID/0/absolute/capabilities HTTP/1.1

…

PSIA Service Model Version 1.0 16

Example HTTP response header and body:

HTTP/1.1 200 OK
…
Content-Type: application/xml; charset=”UTF-8”Content-Length: xxx (note: xxx = size of XML
block)
<?xml version="1.0" encoding="UTF-8" ?>
<PTZData version=“1.0” xmlns=“urn:psialliance-org”>

<pan min=”-100” max=”100”/>
<tilt min=”-100” max=”100”/>
<zoom min=”-100” max=”100”/>
<Momentary>

 <duration min=”0”/>
</Momentary>
<Relative>
 <positionX min=”0” max=”1024”/>
 <positionY min=”0” max=”1024”/>
 <relativeZoom min=”-100” max=”100”/>
</Relative>
<Absolute>
 <elevation min=”-90” max=”90”/>
 <azimuth min=”0” max=”360”/>
 <absoluteZoom min=”0” max=”100”/>
</Absolute>
<Digital>
 <positionX min=”0” max=”1024”/>
 <positionY min=”0” max=”1024”/>
 <digitalZoomLevel min=”0” max=”100”/>
</Digital>

</PTZData>

4.8. Uploading Data
Resources to upload data (i.e. firmware, configuration file, etc.) to the device will use the HTTP PUT
method. The content of the data will be stored in the body of the HTTP request. The Content-Type
and Content-Length will be set in the headers of the HTTP request. The Content-Type is
“application/octet-stream”. In addition, each resource may optionally specify a different inputXML
structure.

Example HTTP upload request header and body:

POST /System/configurationData HTTP/1.1
…
Content-Type: application/ xml; charset=”UTF-8”

[proprietary configuration data content]

Example HTTP upload response header and body:

PSIA Service Model Version 1.0 17

HTTP/1.1 200 OK
…
Content-Type: application/xml; charset=”UTF-8”
Content-Length: xxx (note: xxx = size of XML block)

<?xml version="1.0" encoding="UTF-8" ?>
<ResponseStatus version=“1.0” xmlns=“urn:psialliance-org:response”>
 …
</ResponseStatus>

4.9. Receiving Data
Resources to receive data (i.e. configuration file, etc.) from the device will use the HTTP GET method.
The content of the data will be stored in the body of the HTTP response. The Content-Type and
Content-Length will be set in the headers of the HTTP response, according to the type of data being
returned.
The client may use the Accept: header string to tell the server what formats it accepts. Depending on
what the client accepts, the server may transcode, transform or even compress the data to match the
client’s expectations.

Example HTTP download request header and body:

GET /System/configurationData HTTP/1.1
…

Example HTTP download response header and body:

HTTP/1.1 200 OK
…
Content-Type: application/octet-stream
Content-Length: xxx (note: xxx = size of XML block)

[proprietary configuration data content]

4.10. Operations
For stateless operations (i.e. function calls) the formula is:

PUT /Service/<Operation>

Resources must indicate in their descriptions which XML payload is required or the query string
parameters to be used in the operation.

4.11. Diagnostics
Diagnostics (and other stateful operations) run in the background on the device, so it must be possible
to create them asynchronously and be able to query their status.
The REST model works well here:

Request Result
POST /Diagnostics/<command> Returns diagnostic

ID
GET /Diagnostics/<command>/<ID> Get information on

this ID
DELETE /Diagnostics/<command>/<ID> Delete command in

progress
GET /Diagnostics/commands Get information on

PSIA Service Model Version 1.0 18

all commands
running

4.12. Response Status
Responses to many resource calls contain data in the form of the ResponseStatus XML document.
Within each specification, separate services and resources may each have their own data structures.
The only provision of the model is that each ResourceDescription must indicate which structures are
used and each structure must be defined in an XML schema document within the specification
document. If resources do not define their own response structures, they may use the PSIA standard
ResponseStatus structure as defined in Appendix 10.

4.12.1. Status Code

A ResponseStatus with statusCode=OK will be sent after the command has been completely
processed on the device. Even if the request contains some parameters that are not supported, the
device will ignore those parameters and return statusCode=OK.

A device will send a Device Busy response to a command which cannot be processed at that time (eg.
receiving a reboot command while the flash is being updated)

If the device fails to perform the request - possibly due to a hardware error - it will return a Device Error
statusCode and a fault message in the statusString.

An Invalid Operation statusCode is returned in response to a command that has not been
implemented. Invalid Operation is also returned if an authentication attempt fails or the logged in user
has insufficient privileges to execute the command.

An Invalid XML Format statusCode is returned if the XML is badly formed and causes the parser to
fail. The statusString should indicate the fault.

An incomplete message or a message containing an out-of-range parameter will return an Invalid XML
Content statusCode and associated statusString.

For settings that require a reboot to take effect, such as changing the network address or a firmware
update, the Reboot Required statusCode is returned.

4.12.2. Status String
It is recommended that for all responses where the returned statusCode is not OK, a descriptive
statusString be returned indicating the reason the command was not completed.

4.12.1. ID
In POST operations where the device will return an ID of the resource created, this attribute will be
used to pass back the created ID.

4.13. Processing Rules
Any field (particularly in the inbound XML parameters) that is not supported by the device should be
ignored. For any given resource there may be some special processing rules. These rules are
documented in the column associated with the heading “Implementation Note”.

PSIA Service Model Version 1.0 19

5. XML Modeling

5.1. File Format
All XML files must use UTF-8 (8-bit UCS/Unicode Transoformation Format) encoding according to
RFC3629. A BOM (byte-oder mark) can optionally be used. Thus, a media device should support
UTF-8 encoding with or without a BOM.

5.2. Data Structures
Any Resource can specify separate input and output XML Documents. If a specific data structure is
defined, these must be specified as XML Schema Documents (xsd) within the specification. The xsd’s
created for PSIA specifications are to be included in the appendix section of the relevant specification.
In addition, the PSIA will be posting xsd documents of relevant schemas at
http://www.psialliance.org/XMLSchemas to support online reference of the schemas. However, there is
no guarantee that the schemas will be posted at the same time the documents are published. For this
reason, the schema definitions within the specification documents themselves are the minimal
requirement.

5.3. Lists
Many of the XML blocks contain lists. The syntax of these lists is <XXXList>, where XXX is a name
referring to the XML setting. Inside of the <XXXList> tag is one or more <XXX> nodes. As an
example, the <ChannelList> block may contain content as such:

<ChannelList>
 <Channel>
 <id>1</id>
 …
 </Channel>
 <Channel>
 <id>2</id>
 …
 </Channel>
 …
</ChannelList>

5.4. Capabilities
Capabilities for any resource that defines an XML block for input will be returned as an XML document
that is essentially an XML instance of the resource-specific input XML block. This XML document
must contain the acceptable values for each attribute.

While XML Schema Documents are also required of any XML data defined by any PSIA specification
and xsd documents are capable of defining the acceptable range of values for any attribute, using a
global xsd to define capacities would imply that all devices support the same options for any
parameter. By allowing devices to respond to the capabilities request, each device can support
different values for any attribute, within the constraints of the schema.

PSIA Service Model Version 1.0 20

Capability
Attribute

Description Syntax Applicable
XML Data
Types

Min The minimum character length for
a string, or the minimum
numerical value of a number

Examples:
min=”0”
min=”64”
min=”-100” (numerical only)
min=”1.2”

All except
fixed data
types [1]

max The maximum character length
for a string, or the maximum
numerical value of a number

Examples:
max=”5”
max=”64”
max=”4096”
max=”10.50”

All except
fixed data
types [1]

range Indicates the possible range of
numerical values within the “min”
and “max” attributes of an
element. This attribute should
only be used if the possible
values for an XML element does
not include the entire numerical
range between “min” and “max”
attributes

Ranges are listed in numerical
order separated by a “,”
character. A range has the
form “x~y” where x is the range
floor and y is the range ceiling.
Single numbers may also be
used.

Example: if an XML element
supports values 0, 123, 1024 to
2000, and 2003, the syntax
would be:
range=”0,123,1024~2000,2003”

All numerical
data types

opt Lists the supported options for a
CodeID data type. Required for
XML elements with a CodeID data
type. This attribute should not be
used for any other data type

If all options are supported, the
syntax is “all”. Otherwise,
supported options are listed
separated by a “,” character.

Examples:
opt=”all”
opt=”1,2,3”
opt=”1,2,5,8,9,10,11”

CodeID

Def Indicates the default value of the
XML element. If the element has
no default value, this attribute
should not be used

Examples:
def=”1234”
def=”Device ABC”
def=”3”

All data types

reqReboot Indicates if configuration of this
XML element requires a device
reboot before taking effect. If an
element doesn’t require a reboot,
this attribute should not be used

reqReboot=”true” All data types

dynamic Indicates if an XML element has
dynamic capabilities dependent
on other XML configurations. For
example, if an element’s data

dynamic=”true” All data types

PSIA Service Model Version 1.0 21

range changes based on another
element’s configured value, this
attribute must be used. In this
case, the element’s capability
attributes must always reflect the
current device configuration

Size Indicates the maximum number of
entries in an XML list. This
attribute is only applicable to XML
list elements. This attribute
should not be used for any other
type of element (see section 5.3
for details)

Example: If a device supports 5
users the example would be

<UserSetting>
 <UserList size=”5”>
 …

Only
supported for
list elements
(see section
5.3)

[1] Fixed, pre-defined data types do not need certain capability attributes because their formats/data
ranges are already defined. Where pre-defined data types are used, each protocol document must
include an enumeration of these formats in an Appendix section.

PSIA Service Model Version 1.0 22

6. Custom Services & Resources
In order to support system/device specific resources that are not common to the public service
definitions, the CUSTOM service type is provided. An HTTP GET of the index resource of the
CUSTOM service returns a list of the custom services and resources supported by the system/device.

For each custom resource, an implicit mandatory resource named “Description” must be supported. An
HTTP GET of any custom resource’s Description resource must return a ResourceDescriptionBlock
similar to the Resource Description information described in section 7.6.

Custom services and resource can be used to support protocol-specific resources that are thought to
be of an interim nature (IE a forthcoming protocol will most probably deprecate these resources) or
vendor-specific proprietary resources. As long as all custom services and resources are implemented
according to the PSIA Service Model, they can be discovered and called by PSIA-compliant clients
and applications.

7. Interface Design

The HTTP URL format is of the general form

<protocol>://<hostname>:<port>/<URI>? P1=v1&P2=v2....&pn=vn

All requests will follow this format. A brief description of these components follows:

7.1. Protocol
The protocol field refers to the URL scheme that will be used for the particular request. Note that the
current specification allows the following schemes:

• http
• https

7.2. Hostname
The hostname field refers to the hostname, IP address, or the FQDN (fully qualified domain name) of
an IP device.

7.3. Port
The port field indicates the port number to be used for the HTTP request. The default port number for
HTTP is 80. For HTTPS, the default port is 443. For RTSP, the default port is 554. If neglected in the
URL, these default port numbers will be used for the request (as defined in RFC2616, RFC2818, and
RFC2326 respectively).

The HTTP and HTTPS port number is configurable for IP devices. The standard HTTP and HTTPS
ports (80 and 443) will be assumed unless otherwise specified.

7.4. URI
The URI absolute path is most often of the form “<SERVICE>/<resource>” where <resource>
corresponds to one of the resources defined in the specification. For example, <SERVICE> could
refer to “System” or “Security”. This is true for resources that update or retrieve device configurations.

PSIA Service Model Version 1.0 23

https://hostname:portNo/%3CTag%3E.xml?version=x.x&action=%3Caction%3E&P1=v1&P2=v2....&pn=vn

7.5. Query String
Resources specify required and optional query string parameters. In either case, these query string
parameters must be listed in name-value pair syntax (p1=v1&p2=v2…&pn=vn) following the URI.

Example GET HTTP request with query string parameters:

GET /Streaming/Channels/1/picture?snapShotImageType=jpeg
…

Example POST HTTP request with query string parameters:

PUT /System/time?localTime=2009-02-16%2013:30:00
…

Each resource may define a set of parameters, in the form of name-value pairs, which exist in the
query string. If resources define input dta specific to the resource, this takes precedence over the use
of query string parameters for input.

7.6. Resource Description

For each resource in this document, the following components are defined:
Format – indicates the URL format of the HTTP request
Type – indicates whether this is a service or resource
Method specific (GET, PUT, POST, DELETE)
Query string parameters – indicates the name/value pairs (P1,P2,P3,…Pn) for the resource.
Inbound Data– indicates inbound data for the resource as follows:

- NONE – indicates no input data
- DataBlock - the name of a Data Block defined within the specification. Datablocks used

here must be defined within the specification document. In addition, it is strongly
recommended that .xml schema documents be created for each referenced datablock.

- Mime type – indicates that the input data is in the HTTP payload with the indicated mime
type. NOTE a type of ‘application/xml” is not considisered valid.

If a device doesn’t support particular XML tags or blocks, they need not be used in the resource
operations.
Generally, if fields are not provided in the inbound XML, the current values for these fields should
remain unchanged in the device’s repository.
If required fields do not already exist in the device’s repository, they must be provided in applicable
resource operations.
Function – describes the general function behavior
Return Result – describes the response from the HTTP request
Implementation Note – describes the implementation behavior and any special processing rules
for the resource.

For example,

URI index Version 1.0 Type Resource
Function Enumerate child nodes
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceList>
Notes Returns a flat (non-recursive) listing of all child nodes

PSIA Service Model Version 1.0 24

In order to support discovery of CUSTOM service resources, this resource description data structure is
also captured as a data block of type ResourceDescription. Whenever an HTTP GET of a device’s
CUSTOM/Index resource is executed, a list of the device’s custom resources is returned. For each
custom resource, an HTTP GET of the mandatory resource “Description” will return a
ResourceDescription Block indicating what the resource does and how it should be used.

8. PSIA Standard Resource Descriptions
This section describes the standard PSIA resources

8.1. index
URI index Version 1.0 Type Resource
Function Enumerate child nodes
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceList>
Notes Returns a flat (non-recursive) listing of all child nodes

8.2. indexr
URI indexr Version 1.0 Type Resource
Function Enumerate child nodes
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceList>
Notes Returns a recursive listing of all child nodes

8.3. description

URI Description Version 1.0 Type Resource
Function Describe Current Resource
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceDescription>
Notes Returns a description of the resource

8.4. capabilities
URI capabilities Version 1.0 Type Resource
Function Return capabilities of Current Resource
Methods Query String(s) Inbound Data Return Result
GET None None Resource-Specific
Notes Returns a Capabilities description of the resource

PSIA Service Model Version 1.0 25

9. Acknowledgements
 This document and the PSIA protocol model would not have been possible without significant
contributions by various member companies. While the efforts of all our members are appreciated, the
PSIA would like to explicitly acknowledge the contributions of Cisco, Object Video, GE Security,
Genetec, MileStone, Texas Instruments, IQInvision, Pelco, IBM, and Honeywell for their contributions
of Intellectual Property, Market Requirements and technical activity.

10.

10. Appendices

10.1. Schemas

The following data structures are defined for use with the PSIA Service Model The format used in this
section are basic samples intended to quickly demonstrate the structure of the data blocks. Note that
the actual PSIA protocols are to include their documented data structures as .xsd files.

10.1.1. ResourceDescription

<ResourceDescription version=“1.0” xmlns="urn:psialliance-org:resourcedescription">
 <name>index</name>
 <version>1.0</version>
 <type>resource</type>
 <get>
 <queryStringParameterList>none</queryStringParameterList>
 <inboundXML>none</inboundXML>
 <function>enumerate 1st level children</function>
 <returnResult>ResourceList</returnResult>
 <notes>non-recursive</notes>
 </get>
 <put></put>
 <post></post>
 <delete></delete>
</resourceDescription>

PSIA Service Model Version 1.0 26

10.1.2. ResourceList
 <?xml version="1.0" encoding="utf-8" ?>
- <ResourceList version="1.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns="urn:psialliance-org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:psialliance-org http://www.psialliance.org/XMLSchemas/service.xsd">
- <Resource version="1.0" xmlns="urn:psialliance-org" xlink:href="/index">
 <name>index</name>
 <type>resource</type>
 </Resource>
- <Resource xlink:href="/System">
 <name>System</name>
 <type>service</type>
- <ResourceList>
- <Resource xlink:href="/System/Network">
 <name>Network</name>
 <type>service</type>
- <ResourceList>
- <Resource xlink:href="/System/Network/ipAddress">
 <name>ipAddress</name>
 <type>resource</type>
 </Resource>
 </ResourceList>
 </Resource>
 </ResourceList>
 </Resource>
 </ResourceList>

10.1.3. QueryStringParameterList
 <?xml version="1.0" encoding="utf-8" ?>
- <QueryStringParameterList version="1.0" xmlns="urn:psialliance-org">
- <QueryStringParameter>
 <name>positionX</name>
 <type>integer</type>
 <description>X position of scaling window</description>
 </QueryStringParameter>
 </QueryStringParameterList>

10.1.4. responseStatus
 <?xml version="1.0" encoding="utf-8" ?>
- <ResponseStatus version="1.0" xmlns="urn:psialliance-org">
 <requestURL>/Streaming/Channels</requestURL>
 <statusCode>1</statusCode>

<!-- O=1-OK, 2-Device Busy, 3-Device Error, 4-Invalid Operation, 5-Invalid XML Format, 6-
Invalid XML Content; 7-Reboot Required-->
 <statusString>OK</statusString>
 <ID>1</ID>
 </ResponseStatus>

PSIA Service Model Version 1.0 27

10.1.5. service.xsd

The following XML Schema Document contains XML schema definitions for all of the PSIA Service
Model data structures. All PSIA specifications are to use this schema document to maintain
consistency of the PSIA Service Model data structures.

This document and all subsequent PSIA XML Schema Documents will be posted at
http://www.psialliance.org/XMLSchemas.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema version="1.0"
 targetNamespace="urn:psialliance-org"
 xmlns="urn:psialliance-org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 elementFormDefault="qualified">
 <xs:import namespace="http://www.w3.org/1999/xlink" schemaLocation="xlink.xsd"/>

 <xs:annotation>
 <xs:documentation xml:lang="en">
 PSIA Core Service Schema
 </xs:documentation>
 </xs:annotation>

 <!-- ID -->
 <xs:simpleType name="Id">
 <xs:restriction base="xs:string">
 <!-- TODO -->
 </xs:restriction>
 </xs:simpleType>

 <!-- StatusCode -->
 <xs:simpleType name="StatusCode">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="7"/>
 </xs:restriction>
 <!-- O=1-OK, 2-Device Busy, 3-Device Error, 4-Invalid Operation, 5-Invalid XML
Format, 6-Invalid XML Content; 7-Reboot Required-->
 </xs:simpleType>

 <!-- ResourceType -->
 <xs:simpleType name="ResourceType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="service"/>
 <xs:enumeration value="resource"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- QueryStringParameter -->
 <xs:complexType name="QueryStringParameter">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />

<xs:element name="type" type="xs:string" />
 <xs:element name="description" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

PSIA Service Model Version 1.0 28

 <!-- QueryStringParameterList -->
 <xs:complexType name="QueryStringParameterList">
 <xs:sequence>
 <xs:element name="QueryStringParameter" type="QueryStringParameter" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- URLParameters -->
 <xs:complexType name="URLParameters">
 <xs:sequence>
 <xs:element name="queryStringParameterList" type="QueryStringParameterList" />
 <xs:element name="inboundData" type="xs:string" />
 <xs:element name="returnResult" type="xs:string" />
 <xs:element name="function" type="xs:string" />
 <xs:element name="notes" type="xs:string" />
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

<!-- ResponseStatus -->
 <xs:complexType name="ResponseStatus">
 <xs:sequence>
 <xs:element name="requestURL" type="xs:anyURI" />
 <xs:element name="statusCode" type="StatusCode" />
 <xs:element name="statusString" type="xs:string" />
 <xs:element name="id" type="Id" minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- ResourceDescription -->
 <xs:complexType name="ResourceDescription">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="version" type="xs:string" />
 <xs:element name="type" type="ResourceType" />
 <xs:element name="description" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="notes" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="get" type="URLParameters" />
 <xs:element name="put" type="URLParameters" />
 <xs:element name="post" type="URLParameters" />
 <xs:element name="delete" type="URLParameters" />
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- Resource -->
 <xs:complexType name="Resource">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="version" type="xs:string" />
 <xs:element name="type" type="ResourceType" />
 <xs:element name="description" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="ResourceList" type="ResourceList" minOccurs="0" maxOccurs="1"/>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required"/>
 </xs:complexType>

 <!-- ResourceList -->
 <xs:complexType name="ResourceList">
 <xs:sequence>
 <xs:element name="Resource" type="Resource" minOccurs="0" maxOccurs="unbounded"/>

PSIA Service Model Version 1.0 29

 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required"/>
 </xs:complexType>

</xs:schema>

PSIA Service Model Version 1.0 30

	1. Introduction
	2. Design Considerations
	2.1. REST Overview
	2.2. Conformance
	2.2.1. Minimum API Set
	2.2.2. XML Requirements
	2.2.3. Protocol Requirements

	2.3. HTTP Methods and REST
	2.4. HTTP Status Codes and REST
	2.5. Unique Identifiers
	2.6. ID Encoding

	3. Architecture and Namespace
	4. System Flow
	4.1. Service Discovery
	4.2. Persistent Connections
	4.3. Authentication
	4.4. Access Restrictions
	4.5. Setting Configurations
	4.6. Getting Configurations
	4.7. Getting Capabilities
	4.8. Uploading Data
	4.9. Receiving Data
	4.10. Operations
	4.11. Diagnostics
	4.12. Response Status
	4.12.1. Status Code
	4.12.2. Status String
	4.12.1. ID

	4.13. Processing Rules

	5. XML Modeling
	5.1. File Format
	5.2. Data Structures
	5.3. Lists
	5.4. Capabilities

	6. Custom Services & Resources
	7. Interface Design
	7.1. Protocol
	7.2. Hostname
	7.3. Port
	7.4. URI
	7.5. Query String
	7.6. Resource Description

	8. PSIA Standard Resource Descriptions
	8.1. index
	8.2. indexr
	8.3. description
	8.4. capabilities

	9. Acknowledgements
	10.
	10. Appendices
	10.1. Schemas
	10.1.1. ResourceDescription
	10.1.2. ResourceList
	10.1.3. QueryStringParameterList
	10.1.4. responseStatus
	service.xsd

