

PKOC Specification

Security Classification: Protected

Version: 1.0

Revision: Rev1

Control:
Uncontrolled
when printed

Date 11/05/2021

PKOC Specification

Page 1 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Document History

Version Date Author Description

0.0-.99 Oct 8 2021 Mohammad Soleimani Initial Document

1.0RC1 Oct 22, 2021
Mohammad Soleimani, Alex

Lammers Changed to PSIA Stationary

1.0RC2 Oct 27, 2021 Mohammed Soleimani Added ECDHE Perfect Forward Secrecy Flow
Updated drawings for ECDHE to remove Normal Flow section

1.0 Nov 5, 2021 Released Specification

PKOC Specification

Page 2 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,
OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without
limitation, PSIA disclaims all liability, including liability for infringement of any proprietary rights, relating
to use of information in this specification and to the implementation of this specification, and PSIA
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

No license, express or implied, by estoppels or otherwise, to any PSIA or PSIA member intellectual
property rights is granted herein.

Except that, a license is hereby granted by PSIA to copy and reproduce this specification for internal use
only.

Contact the Physical Security Interoperability Alliance at info@psialliance.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

PKOC Specification

Page 3 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Table of Contents

Introduction... 5

Glossary .. 5

Recommended App Registration Process: .. 6

Registration Sequence Diagram: ... 6

PKOC Requirements: .. 7

Reader ... 7

Mobile Device .. 7

Cryptographic Functions ... 7

PKOC BLE Exchange: .. 7

Initial Advertisement and GATT Service setup .. 7

Message Types ... 8

PKOC Transmission Flows .. 9

Common Handshake for all Flows .. 9

Normal Flow .. 10

SourceGUID Flow ... 10

ECDHE Fast Flow .. 12

ECDHE with Perfect Forward Secrecy Flow ... 14

High Level Interaction Diagrams .. 17

Normal Flow .. 17

SourceGUID Flow ... 18

ECDHE Fast Flow .. 19

ECDHE with Perfect Forward Secrecy Flow ... 20

Sequence Diagram: ... 21

OSDP Reader and panel PKOC authentication .. 21

OSDP/WIEGAND Reader AND Reader PKOC authentication ... 22

Lock PKOC authentication (Fast ECDHE) ... 23

Lock PKOC authentication (Forward Secrecy ECDHE) .. 24

PKOC Specification

Page 4 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Android PKOC Sample Code ... 25

iOS PKOC Sample Code: ... 26

PKOC Specification

Page 5 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Introduction
This document describes an open air-interface protocol for Bluetooth Low Energy (BLE) interactions for
a secure credential exchange with a lock or a Reader for access control. This specification is based on
Public Key Open Credential (PKOC) concept, which is a system solution for secure, interoperable
credentials by utilizing distributed asymmetric encryption key creation. A phone/smart device will
generate an asymmetric key pair using EC (Elliptic curve) algorithm and store it in a secure element
(secure enclave in iOS and key store in android). The Reader/lock will receive the public key from the
phone and authenticate it via challenge-response before granting access.

Glossary
Android – An operating system for mobile devices developed and maintained by Google, Inc..

Application (App) – A software application developed to run on a mobile operating system.

Asymmetric Key Cryptography – A method of communicating where two keys are used, one public which
can be transmitted securely in the open, and the other private which should be kept secret. A message
can then be either encrypted and/or signed using one key to be decrypted and/or verified by the
corresponding key.

Bluetooth Low Energy (BLE) – An subset of the Bluetooth specification designed for low power wireless
data exchange without the need to pair devices or maintain a persistent connection.

Challenge-Response – An authentication protocol where a trusted device sends a single use challenge
that an untrusted device performs a cryptographic operation with using a secret to generate a response
that establishs that the untrusted device possesses and controls the secret.

Credential – A physical or digital token which contains a unique identifier for the individual to whom it
was issued. The credential can then be used to assert the identity of the individual to whom it was
issued to systems that recognize the issuer.

Digital Signature – Additional data attached to a message that uses encryption and decryption
algorithms to verify the message's origin and contents

Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) - is an anonymous key agreement protocol that allows
two parties, each having an elliptic curve public-private key pair, to establish a shared secret over an
insecure channel.

iOS – An operating system for mobile devices developed and maintained by Apple, Inc.

Lock – A physical device designed to prevent access without without the use of a corresponding key.

Mobile Device – a portable telephone or other network connected computer designed to be carried or
worn by the owner.

Nonce – a single use number used as a challenge with Challenge-Response.

PKOC Specification

Page 6 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Panel – A computing device that is maintained within the secured perimeter of a building that
electronically locks and unlocks doors or devices based on messages received at the point of access from
a Reader.

Public Key Open Credential (PKOC) – A method of permitting the secure authentication and transmission
of the credential of an individual using public keys which can be securely passed in the open which are
not issued or created by a centralized authority.

Reader – A small device that is mounted near or embedded within a Lock that permits the transmission
of a credential to a Panel using a magnetic stripe, RFID, NFC, or Bluetooth to exchange data with a
credential issued to an individual.

Secure Element - a hardware component that provides all cryptographic operations for authenticating
the user and is designed to be secure even if the operating system kernel is hacked (e.g. Secure Enclave
in iOS and Key Store in Android.)

Universally Unique Identifier (UUID) – a 128-bit number used to identify a unique object on a computer
system

Recommended App Registration Process:
In the app, we would have a registration where

• The app will generate the asymmetric key pair with Elliptic Curve (EC) cryptography and save it
to the secure element.

• It will send the public key to the cloud at the time of registration. The public key must be
transferred in the encrypted format.

Registration Sequence Diagram:

Figure 1 - Registration Sequence

PKOC Specification

Page 7 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

PKOC Requirements:
Reader
To meet the data transmission requirements for PKOC all Readers must support BLE 4.21 and utilize the
Data Packet Length Extension to permit up to 242 bytes of data to be transmitted. Any reference to
Reader in this specification can also refer to a passthrough from a Reader to a Panel where the Panel
performs the Reader’s actions.

Mobile Device
To interface with a PKOC compliant Reader a mobile device must also support BLE 4.2. Of the most
common mobile operating systems in use today this would requires IOS 9.2.1 or later, and Android 6.0.1
or later2. Developers are strongly encouraged to support Android 9.0 and later to utilize the operating
system level secure enclave.

Cryptographic Functions
PKOC utilizes asymmetric cryptographic functions to securely transmit public keys and other data to
Readers. To generate digital signatures on the most common mobile operating systems
EcdsaSignatureMessageX962Sha256 is preferred for IOS and SHA256WithECSDA for Android. The
signature must follow DER x9.62 encoding but transmit only the 64-byte "real numbers" from the 72-74
byte DER encoded signature. For the Reader, cryptographic functions must be performed by a hardware
secure element.

PKOC BLE Exchange:
Initial Advertisement and GATT Service setup

The BLE beacon advertisement and service UUID for PKOC Readers will be 41fb60a1-d4d0-4ae9-8cbb-
b62b5ae81810

There would be a PKOC GATT Service (UUID: 41fb60a1-d4d0-4ae9-8cbb-b62b5ae81810) which will have
two characteristics:

1. PKOC Write (UUID: fe278a85-89ae-191f-5dde-841202693835) which will supports: write with
notification, write without response.

2. PKOC Read (UUID: e5b1b3b5-3cca-3f76-cd86-a884cc239692) which will supports: read, notify,
indicate.

NOTE: The PKOC GATT service UUID, and Write and Read characteristic UUIDs are static for PKOC
Readers.

1 https://www.bluetooth.com/specifications/specs/core-specification-4-2/
2 https://devzone.nordicsemi.com/f/nordic-q-a/11678/ble-4-2-and-smart-phones-os-compatibility

PKOC Specification

Page 8 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Message Types
• Messages will utilize a Type/Length/Value (TLV) command structure.

o Type will be fixed at 1 byte.
o Length will be fixed at 1 byte permitting a maximum 245 bytes to be usable for the

value.
o Value will contain the data needed to fill but not exceed the length specified.

• Packets can contain more than one message using concatenation.
o Additional messages will begin at the byte immediately following the last message.
o There is no limit on the number of messages that can be concatenated subject to the

maximum transmission unit size of 247 bytes.
• Support for the following messages is mandatory to be PKOC compliant.

GATT Specific Type
Type Details
0x01h Uncompressed Public Key ECC P-

256 (65 Bytes)
PKOC Write

0x02h Nonce PKOC Read/Write
0x03h Digital Signature PKOC Write
0x04h Response Signature Verification
0x05h Source GUID / Owner GUID PKOC Read
0x06h Obfuscated Public Key PKOC Write
0x07h Phone ECDHE Establish PKOC Write
0x08h Reader ECDHE Accept PKOC Read
0x09h Encryption Error PKOC Read/Write
0x0Ah (reserved, debug) PKOC Read/Write
0X0Bh Request Reader use epheremal

keys for ECDHE
PKOC Write

0x40h Encrypted data follows PKOC Write
0x80h Manufacturer Specific Data PKOC Read/Write

• Manufacturer Specific Data: Type 0x80h will be reserved to allow Manufacturer Specific Data

(GATT) for the transmission of non-standard data within the standard messaging protocol. This
will be in TLV format.

o Type must be 1 byte with a value of 0x80h for Manufacturer Specific Data.
o Length will be 1 byte with a value of 0x03h for the Manufacturer Unique Number

length

PKOC Specification

Page 9 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

o Value must be 3 bytes for the Manufacturer Unique Number3 followed by the rest
of the data.

• Reader/Panel will perform data verification steps and will send the acknowledge byte to
the phone.

PKOC Transmission Flows
PKOC supports four (4) types of data communication between the PKOC Reader and an App on a mobile
device. The App will scan for a PKOC Service UUID when a Reader is discovered. The App will be able to
communicate with the Reader using the Normal Flow, the SourceGUID Flow, and two ECDHE Flows. The
Normal Flow permits communication if the App has neither the public key nor the ObfuscationGUID
corresponding to the Reader. The SourceGUID can be used if the App possesses the ObfuscationGUID
corresponding to the SourceGUID of the Reader. The ECDHE flows can be used if the App has the public
key for the Reader.

NOTE: While all four flows are required in the Reader to support the PKOC specification, the app will
select one of the four flows.

Common Handshake for all Flows
The below steps are the handshake procedures before the app selects which flow it will authenticate
with.

1. App will scan for PKOC Service UUID, if the Reader is discovered.
2. App will make connection with the Reader.
3. App will discover the PKOC GATT Service
4. App will discover the PKOC Characteristic UUIDs
5. App will send Nonce request to the Reader
6. Reader will send Nonce (16 bytes) +Source GUID (16 bytes) to the App.

Based on the Reader id in advertisement data, the App will make a decision whether it can follow the
Normal Flow, SourceGUID Flow, or ECDHE Flow.

3 Manufacturer’s Unique Number is obtained from the IEEE https://standards.ieee.org/products-
services/regauth/oui/index.html

PKOC Specification

Page 10 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Note: If the App has an Obfuscation GUID that matches the Source GUID for the Reader the Normal Flow
and Source GUID Flow are available. If the App has the Reader’s Public Key the Normal Flow and the
ECDHE Flows are available. The App is not required to answer if the Source GUID is unknown.

Normal Flow
The Normal Flow transmits the PKOC without any encryption or obfuscation. Because the PKOC is a
public cryptographic key there is no reduction in security.

1. Using the Private Key of the app, generate the digital signature for the Nonce that Reader sent.
2. Remove the ASN header from #1
3. Fetch uncompressed public key from secure enclave.
4. App sends public key and digital signature to the Reader.
5. Reader will verify the signature and send back response

a. 040101 – Success
b. 040100 – Failed

NOTE:- The last byte [Least significant] suggests the Success or Failure and the reason.

We will use 3 least significant bits of the last byte and below are the details:

1. The least significant bit indicates Success (if true) or Failure (if false)
2. The 2nd least significant bit indicates Access Denied (if true)
3. The 3rd least significant bit indicates Signature not verified (if true)

Bits (Least Significant Byte) Hex Value Status

00000001 0x01 Success

00000000 0x00 Failure (Unknown reason)

00000010 0x02 Failure (Signature Verified but Access denied)

00000110 0x06 Failure (Signature not verified and Access denied)

SourceGUID Flow
The SourceGUID Flow transmits the PKOC use prearranged obfuscation. Although the PKOC is a public
cryptographic key and there is no reduction in security through clear transmission, the use of the
obfuscation key provides increased privacy for the PKOC owner.

PKOC Specification

Page 11 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

1. App will send the obfuscated EC Public key and Digital signature to the Reader
o Logic to create Obfuscated Public Key
1. Append Nonce + Obfuscated GUID corresponding to the source GUID that Reader sent.
2. Generate SHA256 of #1, it will give out 32 bytes of hashed data.
3. Concatenate hashed data (#2) two times to make it 64 bytes of data.
4. Prepend #3 with 00 to make it 65 bytes.
5. Now as both hashed data (#4) and the Public key are 65 bytes, do the XOR of both the

strings, this will be the Obfuscated public key.
o Logic to create Digital Signature
1. Using the Private key of the app, generate the digital signature for the Nonce that

Reader sent.
2. Remove the ASN header from #1

2. Reader will un-obfuscate the Public key
o Logic to un-obfuscate Public Key (same 4 step that were used while creating

obfuscated Public Key)
1. Append Nonce + Obfuscated GUID corresponding to the source GUID that Reader has.
2. Generate SHA256 of #1, it will give out 32 bytes of hashed data.
3. Concatenate hashed data (#2) two times to make it 64 bytes of data.
4. Prepend #3 with 00 to make it 65 bytes.
5. Reader will now do the XOR of the Obfuscated Public Key that the app sent and the

string generated in #4. It will give the Public key of the app
3. Reader will verify the signature and send back the status to app

o Reader will verify the signature with the public key that was retrieved from the
obfuscated public key.

c. 040101 – Success
d. 040100 – Failed

NOTE:- The last byte [Least significant] suggests the Success or Failure and the reason.

We will use 3 least significant bits of the last byte and below are the details:

1. The least significant bit indicates Success (if true) or Failure (if false)
2. The 2nd least significant bit indicates Access Denied (if true)
3. The 3rd least significant bit indicates Signature not verified (if true)

Bits (Least Significant Byte) Hex Value Status

00000001 0x01 Success

00000000 0x00 Failure (Unknown reason)

PKOC Specification

Page 12 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

00000010 0x02 Failure (Signature Verified but Access denied)

00000110 0x06 Failure (Signature not verified and Access denied)

ECDHE Fast Flow
The ECDHE Flow transmits the PKOC using Elliptic Curve encryption. This flow provides the maximum
amount of privacy but requires prior knowledge of the public key of the Reader.

A Reader is manufactured with an embedded Elliptic Curve key pair key pair. This key pair can be used as
an ECDH key for secure key exchange and as an ECDSA key for authentication and signing. The Reader’s
flash memory is the only place where the private portion of the key pair exists.

To establish a secure communications channel, the Phone and Reader interact as follows:

1. The Phone has recognized the Reader from the Reader’s advertisement, and already has
the Reader’s PK public key

2. The Phone will generate a random 16 to 32 byte “nonce” (default 16 byte) challenge to
the Reader’s embedded key, and transmit it as TLV 0x02.

a. (This is distinguished from the “PKOC challenge” 0x02 code by virtue that it’s
being transmitted from the phone to the Reader)

3. Phone will then generate an “ephemeral key pair” for ECDHE, and transmit a 65 byte
TLV 0x07 to the Reader, containing the ECDH parameter block for ECDHE shared-
secret generation.

a. Note that the TLV 0x07 should follow the TLV 0x02
4. (The phone may calculate the Shared Secret concurrently, while waiting for the Reader’s

response)
5. The Reader will receive the TLV 0x02 “nonce”, and perform the following:

a. The Reader will perform a SHA256 function over the hash to produce a 32 byte
hash

b. The Reader will “sign” the hash using it’s embedded PK as ECDSA key
c. It will transmit the TLV 0x08, giving the Nonce digital signature (64 bytes) to

authenticate itself
6. The Reader will receive the TLV 0x07, and perform the following:

a. Use its embedded PK as an ECDH key to complete the ECDH interaction; the
Reader may now calculate the Shared Secret

7. App will receive the TLV 0x08, and verify the digital signature; if the digital signature is
a. Not Verified, it will throw error

8. Both the Reader and the Phone use SHA256 to turn the exact same Shared Secret value
into the exact same AES256 key

9. The Reader and Phone are now prepared to communicate securely, using AES256-CBC
with an IV of 0.

PKOC Specification

Page 13 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

With an AES256 key now available, the Phone or App may insert a “begin encrypted” TLV
indicator in any messages:

1. T = 0x40 “begin encryption”
2. L = 1, one data byte follows
3. V = sequence number, begins at 1 and counts for each “begin encryption” TLV that is

transmitted
a. AES-CBC requires that encrypted blocks are strictly ordered. The sequence

number allows a recipient to know if the message flow was interrupted (BLE is a
datagram service after all).

b. If a sequence error occurs, the BLE connection must be closed
i. except, the recipient may choose to ignore a duplicate

c. If the connection becomes closed, a new connection must re-establish ECDHE.
d. Sequence number increment wraps from 255 to 0

4. The remainder of the received characteristic buffer, following 0x40 0x01 0xnn, requires
decryption via the ECDHE AES256-CBC key

5. The buffer requires padding to a multiple of 16 bytes
a. The encrypted form of the padding is random. In decrypted form, the padding

must be 0s
6. In case of Success or Failure (due to signature not verified or Access Denied), below data

will be returned from the Reader

a. 040101 – Success
b. 040100 – Failed

NOTE:- The last byte [Least significant] suggests the Success or Failure and the reason.

We will use 3 least significant bits of the last byte and below are the details:

1. The least significant bit indicates Success (if true) or Failure (if false)
2. The 2nd least significant bit indicates Access Denied (if true)
3. The 3rd least significant bit indicates Signature not verified (if true)

Bits (Least Significant Byte) Hex Value Status

00000001 0x01 Success

00000000 0x00 Failure (Unknown reason)

00000010 0x02 Failure (Signature Verified but Access denied)

00000110 0x06 Failure (Signature not verified and Access denied)

PKOC Specification

Page 14 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

ECDHE with Perfect Forward Secrecy Flow
The ECDHE Flow transmits the PKOC using Elliptic Curve encryption. This flow provides the maximum
amount of privacy with Forward Secrecy but requires prior knowledge of the public key of the Reader.

A Reader is manufactured with an embedded Elliptic Curve key pair key pair. This key pair can be used as
an ECDH key for secure key exchange and as an ECDSA key for authentication and signing. The Reader’s
flash memory is the only place where the private portion of the key pair exists.

To establish a secure communications channel, the Phone and Reader interact as follows:

1. The Phone has recognized the Reader from the Reader’s advertisement, and already has
the Reader’s PK public key

2. Phone generated ephemeral ECDH Keys
3. The Phone will generate a random 16 to 32 byte “nonce” (default 16 byte) challenge in

TLV 0x02 and send to the Reader along with its ephemeral Public key 65 byte TLV 0x07
and message 0x0Bh with a value of 0x01h to prompt Reader to also generate ephemeral
keys, transmitted it in the TLV formats.

 Note: This is distinguished from the “PKOC challenge” 0x02 code by virtue that it’s
being transmitted from the phone to the Reader. The TLV 0x07 should follow the TLV 0x02

4. The Reader will receive the TLV 0x02 “nonce”, and perform the following:
a. The Reader will perform a SHA256 function over the hash to produce a 32 byte

hash
b. The Reader will “sign” the hash using it’s embedded PK as ECDSA key

5. The Reader will receive the TLV 0x0B “Request for ephemeral PK”, and generates the
ephemeral keys, containing the ECDH parameter block for ECDHE shared-secret
generation.

6. The Reader will receive the TLV 0x07, and uses its ephemeral Private Key as an ECDH
key along with Phone’s ephemeral Public Key to complete the ECDH interaction; the
Reader may now calculate the Shared Secret.

7. The reader transmits the TLV 0x08 digital signature and TLV 0x07 reader’s ephemeral
public key.

8. The phone receives TLV 0x07 “Reader’s ephemeral public key”, and will create a shared
secret key with its ephemeral Private Key as an ECDH key along with reader’s ephemeral
Public Key concurrently

9. The phone receives TLV 0x08 “Digital Signature” and will verify the digital signature, if
not verified will throw error.

10. Both the Reader and the Phone use SHA256 to turn the exact same Shared Secret value
into the exact same AES256 key

11. The Reader and Phone are now prepared to communicate securely, using AES256-CBC
with an IV of 0.

PKOC Specification

Page 15 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

With an AES256 key now available, the Phone or App may insert a “begin encrypted” TLV
indicator in any messages:

1. T = 0x40 “begin encryption”
2. L = 1, one data byte follows
3. V = sequence number, begins at 1 and counts for each “begin encryption” TLV that is

transmitted
a. AES-CBC requires that encrypted blocks are strictly ordered. The sequence

number allows a recipient to know if the message flow was interrupted (BLE is a
datagram service after all).

b. If a sequence error occurs, the BLE connection must be closed
i. except, the recipient may choose to ignore a duplicate

c. If the connection becomes closed, a new connection must re-establish ECDHE.
d. Sequence number increment wraps from 255 to 0

4. The remainder of the received characteristic buffer, following 0x40 0x01 0xnn, requires
decryption via the ECDHE AES256-CBC key

5. The buffer requires padding to a multiple of 16 bytes
a. The encrypted form of the padding is random. In decrypted form, the padding

must be 0s
6. In case of Success or Failure (due to signature not verified or Access Denied), below data

will be returned from the Reader

c. 040101 – Success
d. 040100 – Failed

NOTE:- The last byte [Least significant] suggests the Success or Failure and the reason.

We will use 3 least significant bits of the last byte and below are the details:

4. The least significant bit indicates Success (if true) or Failure (if false)
5. The 2nd least significant bit indicates Access Denied (if true)
6. The 3rd least significant bit indicates Signature not verified (if true)

Bits (Least Significant Byte) Hex Value Status

00000001 0x01 Success

00000000 0x00 Failure (Unknown reason)

00000010 0x02 Failure (Signature Verified but Access denied)

00000110 0x06 Failure (Signature not verified and Access denied)

PKOC Specification

Page 16 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

7. In case of failure related to encryption, TLV code 0x09 will be sent from the Reader to
the Phone, or from the Phone to the Reader. The TLV will be composed of “0x09 0x01
0xnn”, where 0x01 is the payload length, and 0xnn will be a sub-code mention below in
the table:

Least Significant Byte Hex Value Failure Reason

00000001 0x01 Sequence number error (did not begin at 1, or non-
consecutive)

00000010 0x02 Length following 0x40 “tlv_encrypted” is not a multiple
of 16

00000011 0x03 ECDHE encryption key not yet established

00000100 0x04 Internal error

Upon receipt of an encryption error, the Phone and Reader must close the current connection and
re-connect (including new ECDHE negotiation, if necessary).

PKOC Specification

Page 17 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

High Level Interaction Diagrams

Normal Flow

Normal Flow - Mobile Lock Interaction

PKOC Specification

Page 18 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

SourceGUID Flow

Source GUID- Mobile Lock Interaction

PKOC Specification

Page 19 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

ECDHE Fast Flow

ECDHE Fast Flow - Mobile Lock Interaction

PKOC Specification

Page 20 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

ECDHE with Perfect Forward Secrecy Flow

ECDHE with Perfect Forward Secrecy Flow – Mobile Lock Interaction

PKOC Specification

Page 21 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Sequence Diagram:
OSDP Reader and panel PKOC authentication

PKOC Specification

Page 22 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

OSDP/WIEGAND Reader AND Reader PKOC authentication

PKOC Specification

Page 23 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Lock PKOC authentication (Fast ECDHE)

PKOC Specification

Page 24 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Lock PKOC authentication (Forward Secrecy ECDHE)

PKOC Specification

Page 25 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

Android PKOC Sample Code

1. Create a P-256 ECC public/private key pair

public void CreateKeyPair1()
{
 KeyPairGenerator keyGenerator =
KeyPairGenerator.GetInstance(KeyProperties.KeyAlgorithmEc, "AndroidKeyStore");

 ECGenParameterSpec ecParam = new ECGenParameterSpec("secp256r1");
 var builder = new KeyGenParameterSpec.Builder(_keyName, KeyStorePurpose.Sign |
KeyStorePurpose.Verify)
 .SetUserAuthenticationRequired(false)
 .SetDigests(KeyProperties.DigestSha256)
 .SetRandomizedEncryptionRequired(false)
 .SetKeySize(256)
 .SetAlgorithmParameterSpec(ecParam);
 keyGenerator.Initialize(builder.Build())
 keyGenerator.GenerateKeyPair();
}

2. Get the public key

public IKey GetPublicKey()
 {

 if (!_androidKeyStore.ContainsAlias(_keyName))
 return null;
 return _androidKeyStore.GetCertificate(_keyName)?.PublicKey;
 }

3. Get the signature from PK and the Hash value

// Create Signature instance
Signature s = Signature.GetInstance("SHA256withECDSA");
// Get Private Key
var key = ((PrivateKeyEntry)entry).PrivateKey;
// initialization signature with private key.
s.InitSign(privateKey);
// Update the data to be verified.
s.Update(data);
// create signature
var signature = s.Sign();

4. Extract 64 Byte of signature

public static byte[] RemoveASNHeaderFromSignature(byte[] signature)
{
 if (signature.Length == 64)
 {
 return signature;
 }
 var calculatedSignature = new byte[64];
 int xLength = signature[3];
 var arrX = new byte[32];
 // copy 32 bytes in arrayX
 Array.Copy(signature, xLength == 32 ? 4 : 5, arrX, 0, 32);
 // copy 32 bytes in aaryaY
 int yLength = signature[3 + xLength + 2];

PKOC Specification

Page 26 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

 var arrY = new byte[32];
 Array.Copy(signature, yLength == 32 ? (3 + xLength + 2 + 1) :
(3 + xLength + 2 + 1 + 1), arrY, 0, 32);
 // copy arrayX and arrayY in signature bytes.
 Array.Copy(arrX, 0, calculatedSignature, 0, arrX.Length);
 Array.Copy(arrY, 0, calculatedSignature, arrX.Length, arrY.Length);

 return calculatedSignature;
}

iOS PKOC Sample Code:
1. Create a P-256 ECC public/private key pair

private bool GenerateKECKeyPair() {
using (var access = new SecAccessControl(SecAccessible.AfterFirstUnlockThisDeviceOnly,
SecAccessControlCreateFlags.PrivateKeyUsage) {
 var secKeyAttributes = new SecPublicPrivateKeyAttrs {
 ApplicationTag = KeyStoreName,
 CanDecrypt = true,
 CanEncrypt = true,
 CanSign = true,
 CanVerify = true,
 IsPermanent = true,

 };
 var secStatusCode = SecKey.GenerateKeyPair(SecKeyType.EC, 256, secKeyAttributes, out SecKey
publicKey, out SecKey privateKey);
 if (secStatusCode == SecStatusCode.Success)
{ return true; }
 else{ return false; }
 }
}

2. Get the public key:

private SecKey GetPublicKey()
var Key = SecKeyChain.QueryAsConcreteType(
 new SecRecord(SecKind.Key){
 KeyType = SecKeyType.EC,
 ApplicationTag = KeyStoreName,
 },
 out var code);
 code == SecStatusCode.Success ? Key as SecKey : null;
return key.GetPublicKey();

3. Get the signature from PK and the Hash value

NSData generateDigitalSignature (NSData hashData)
{ NSData signedData = null;
 try {
 SecKey privateKey = getPrivateKey ();
 Console.WriteLine (privateKey);
 NSError err;
 if (privateKey == null) {
 GetSecureEnclavePublicKey ();
 privateKey = getPrivateKey ();
 }

PKOC Specification

Page 27 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

 signedData = privateKey?.CreateSignature (SecKeyAlgorithm.EcdsaSignatureMessageX962Sha256,
hashData, out err);
 Console.WriteLine (signedData);
 } catch (Exception ex) {
 }
 return signedData;
 }

4. Extract 64 Byte of signature

private byte[] RemoveASNHeaderFromSignature(byte[] signature)
 {
 if (signature.Length == 64)
 return signature;
 var calculatedSignature = new byte[64];
 int xLength = signature[3];
 var arrX = new byte[32];
 Array.Copy(signature, xLength == 32 ? 4 : 5, arrX, 0, 32);
 int yLength = signature[3 + xLength + 2];
 var arrY = new byte[32];
 Array.Copy(signature, yLength == 32 ? (3 + xLength + 2 + 1) : (3 + xLength + 2 + 1
+ 1), arrY, 0, 32);
 Array.Copy(arrX, 0, calculatedSignature, 0, arrX.Length);
 Array.Copy(arrY, 0, calculatedSignature, arrX.Length, arrY.Length);
 return calculatedSignature;
 }

PKOC Specification

Page 28 of 29 V 1.0 Rev1 Copyright © 2021 PSIA

END OF DOCUMENT

	Introduction
	Glossary
	Recommended App Registration Process:
	Registration Sequence Diagram:
	PKOC Requirements:
	Reader
	Mobile Device
	Cryptographic Functions

	PKOC BLE Exchange:
	Initial Advertisement and GATT Service setup
	Message Types
	GATT Specific Type

	PKOC Transmission Flows
	Common Handshake for all Flows
	Normal Flow
	SourceGUID Flow
	ECDHE Fast Flow
	ECDHE with Perfect Forward Secrecy Flow

	High Level Interaction Diagrams
	Normal Flow
	SourceGUID Flow
	ECDHE Fast Flow
	ECDHE with Perfect Forward Secrecy Flow

	Sequence Diagram:
	OSDP Reader and panel PKOC authentication
	OSDP/WIEGAND Reader AND Reader PKOC authentication
	Lock PKOC authentication (Fast ECDHE)
	Lock PKOC authentication (Forward Secrecy ECDHE)

	Android PKOC Sample Code
	iOS PKOC Sample Code:

